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Abstract

A method for locally fairing uniform cubicB-Spline curvesandsurfaceswill bepresented.

The algorithm usesanautomatedtechniquewhichdetectsundesirablegeometriccharacteris-

tics by usingalocal fairnesscriterion. The geometricentity is thensmoothedusingamethod

basedon therepeatedremoval andinsertion of thespline knots in thevicinity of the geomet-

ric irregularity.

1. Fairness

In order to determinewhatconstitutesanerror in the representationof acurveor surface,

a meansof judging its integrity mustbe defined. An accuraterepresentationof a geometry

should exhibit discontinuitiesonly at locations intended by the designerand nowhere else.

This is to saythat a curve or surfaceshouldbe fair in regionsabsentof intended geometric

discontinuities. Defining exactlywhat constitutesa fair curve is quite subjective;however,

Dill [5] definesa fair curveashavinga curvature plot consistingof smoothly varying mono-

tone segments.A similar definition is also offered by Farin [3], and by Su and Liu [6].

Using the aforementioned definition of fairness,a method must now be formulated by

which the geometrycanbe interrogatedto determined regionsneedingto besmoothed. Sev-

eral meansof interrogation havebeensuggested.For detection of irregularities in surfaces,

Kaufmann and Klass [7] use reflection lines. Beck [8] usesa variety of methods including

contour plots, shadedimages,and mapsof principal curvature. Hoschek [9] usesk-ortho-

tomic curves for interrogation of planar curves,and Renz [10] usesseconddivided differ-

ences. Farin suggeststhe useof curvatureplots (Refs. [1], [2], and [3]) since they are highly

sensitive to changes in curve shape and they allow easy detection and location of inflection

points. However, signed curvature applies only to planar curves and is, by definition, nonneg-

ative for space curves. As a more general approach, third derivatives may be used Ref [4].

In the present work, third derivatives will be used as the basis for judging the degree of

fairness of a curve. This quantity will be suitable for both planar and space curves and is quite

sensitive to small changes in curve shape. A separate criterion for surfaces will not be de-



fined sincesmoothingof asurfacewill beaccomplishedby smoothing the curvenet defining

the surface.

Sincea fair curve shouldbe composedof segments with smoothly varying third deriva-

tives, location of third-derivative discontinuities will provide a means of determining where

smoothing is needed. One method of locating discontinuities is to calculate the left and right

hand limits of third derivatives at each spline knot and then compare them. This will be the

basis for a quantity known as local fairness and leads to the following definition:

Definition: Let x(t) be a C 2 parametric cubic piecewise curve with t as the global

parameter. The the local fairness c is defined as

e = [1x'"(t +) - x'"(t_) [1.

Note that c is a local quantity since it may vary with the parameter value of the parameter

t. It is reasonable to say that the point most in need of smoothing is the point with the largest

value of c. A question now arises concerning how the local fairness is to be calculated. Since

the present work limits the smoothing algorithm to the treatment of B-Spline curves, use will

be made of the B-Spline basis functions. However, it should be noted that the calculation

of local fairness is only necessary at the spline knots. This is due to the fact that each B-Spline

segment is a polynomial and therefore is differentiable an infinite number of times. Hence,

derivative discontinuities can only exist at points where spline segments meet ( the spline

knots ).

2. Curve Fairing

In order to fair or smooth at a particular spline knot, a method must be developed which

is local in nature. That is, when the method is applied, it only affects the curve in a small

region surrounding the point which was smoothed. One such method is proposed by Farin

[3]. First, the local fairness is calculated at each knot in the spline; then the knot with the
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largestvalue of c is chosen as the knot at which smoothing will take place. Let this knot be

the knot associated with the B-Spline control point di. The knot is then removed from the

knot sequence and a new location di for the control point di is calculated. The knot is then

reinserted into the knot sequence so that the number of spline segments remains the same

as in the original curve.

The criteria for the selection of a new location for the control point di will be third deriva-

tive continuity at the knot. Mathematically, this amounts to equating the left and right hand

limits of the third derivative at the spline knot ( e.g. driving • to zero ). The left and right

hand limits of the third derivative of a B-Spline curve at the ith knot are given by

I_itt(o) = -di-1 + 3di-3di+1 + di+2, (1)

P_t_tl(1) = - di-2 + 3di-1 - 3di + di+ 1. (2)

Setting Equation (1) equal to E0zquation (2) and solving for di the new location for di, di is

given by

1 (3)di = l ti +  ri,

with the points li and ri given by

4 I d
li = ff di-1 - "_- i-2,

4 1 d
r i ------_-di+ 1--_- i+2-

Figure 1 illustrates the process given by Equations (3) through (5).

(4)

(5)



li di ri di + 1 d.

•

Figure 1. di

Because movement of the B-Spline control vertices results in changing the shape of the origi-

nal curve, measures must be taken to assure that the original geometry is not disturbed be-

yond some working tolerance. This is accomplished by storing the original curve and measur-

ing the shape perturbation due to the smoothing process. If at a given knot, the new location

of the control vertex is farther away than problem tolerances allow, the vertex is moved in

the direction of the new location, but the distance is constrained by the prescribed tolerance.

4. Surface Fairing

Fairing of surfaces is accomplished by using a tensor product method. This amounts to

smoothing the curve net that defines the surface. Curves are functions of only one parameter,

u. However, surfaces are functions of two parameters, u and v. In the tensor product ap-

proach, each curve of constant v is smoothed and the results stored. Then, using the result

of the first smoothing pass, each curve of constant u is smoothed. This procedure constitutes

one smoothing pass for a surface. The resulting surface will be smoother than the original.

The tensor product method is discussed in detail in Ref. [3], and its application to surface

smoothing is discussed in Refs. [2] and [3].

5. Results

The smoothing algorithms discussed here have been applied to both curves and surfaces.

The following figures illustrate effects of smoothing on shape and geometrical qualities.
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Figures 2 through 4 are of a NACA 0012 symmetrical airfoil. As illustrated by Figure

2, the results of smoothing are, at best, very difficult to detect from a distance. However, the

zoomed view provided in Figure 3 provides a better picture of the shape change due to

smoothing. Figure 4 is a comparison of signed curvature calculations on the original and

smoothed curves. This is a good illustration of how virtually imperceptible changes in the

curve geometry can result in dramatic changes in the character of its derivatives.

Figures 5 through 8 are of a waisted body configuration. Figure 5 is, again, a plot of the

B-Spline control polygon for the geometry before and after smoothing. Figure 6 is a compar-

ison of curvature plots for the smoothed and unsmoothed data. Figure 7 shows the effect

of smoothing on the metric coefficient _qy. Metric coefficients are important to flow calcula-

tions provided by CFD codes. Perturbation of the geometry due to smoothing is also an im-

portant consideration. Figure 8 provides some indication of the change in shape due to

smoothing. The point displacement values are determined by measuring the magnitude of

the distance each point on the smoothed geometry is from its corresponding point on the orig-

inal. The values for point displacement are given in percent of total arclength of the curve

defining the body.

The next set of figures provides some idea of the problems associated with digitized data.

Figure 9 is a curve produced from digitized F-15 fighter aircraft surface data. Rough spots

on the curve are easily visible; in addition, the curvature plot in Figure 11 reveals large discon-

tinuities in the third derivative. Figure 10 is the same curve after the smoothing algorithm

has been applied. Not all points on the curve were smoothed, only those chosen by the auto-

matic interrogation algorithm. The dark curve in Figure 11 is a plot of curvature after

smoothing. As can be seen by comparison of both the curves and the curvature plots, the

smoothed curve is a much more aesthetic entity.

Surface smoothing capability is illustrated by Figures 12 and 13. Figure 12 is a plot of

are F-15 fighter aircraft fuselage. The data for this surface was digitized. Figure 13 is the
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samesurfaceafter the smoothingalgorithm hasbeenapplied. In this case,no toleranceson

point movement were set. This wasto allow the resultsthe smoothingprocessto be readily

visible. In practice, however, this degreeof geometry perturbation would almost never be

aIlowed.

Conclusion

Experience hasshownthat this algorithm workswell and is quite robust. In addition, it

has shown promise for smoothing sets of data points in addition to the B-spline control nets

for which it was formulated. However, this has yet to be proved formally and is based purely

on experience and conjecture on the part of the author. This algorithm will now be incorpo-

rated into the EAGLE grid generation system.

6



References:

1. Sapidis,N. and Farin, G. "Automatic fairing algorithm for B-spline curves", Computer

Aided Design, Vol. 22, March 1990, pp. 121-129.

2. Farin, G. and Sapidis, N., "Curvatures and the Fairness of Curves and Surfaces",

IEEE Computer Graphics and Applications, Vol. 9, No. 4, March 1989, pp. 52-57.

3. Farin, G., Curves and Surfaces for Computer Aided Geometric Design,

Academic Press, 1988.

4. Farin, G. Rein, G. Sapidis, N. and Worsey, A.J., "Fairing cubic B-spline curves,"

Computer Aided Geometric Design, Vol. 4, No. 1-2, July 1987, pp. 91-93.

5. Dill, J., '_ application of color graphics to the display of surface curvature", Computer

Graphics, 15:153-161, 1981.

6. Su Bu-Qing and Liu Ding-Yaun. Computational Geometry., Academic Press 1989.

7. Kaufmann, E. and Klass, R., "Smoothing surfaces using reflection lines for families of

splines", Computer-Aided Design, Vol. 20, No. 6, 1988, pp. 312-316.

8. Beck, J.M. et al., "Surface Analysis Methods," IEEE Computer Graphics and

Applications, December 1986.

9. Hoschek, J., "Smoothing of curves and surfaces," Computer-Aided Geometric Design 2,

1985, pp. 97-105.

10. Renz, W., "Interactive smoothing of digitized point data", Computer-Aided Design,

Vol. 14, No. 5, September 1982, pp. 267-269.

7



8

0 o_
0 .E

XE

o E

(D

0 <
"-4---

lo

c- o

0
On _-0

0 m
a

0
k_

C

0

0

' I

i

i

I

I

I

1
I

I ' I _ I '

0

00

0

qO

0

0

Cxl

o

o
o

X

t_

A



O
_|I

-.<
o,.1

O .E
_2

Z
q,)

O. <

c
C o

O

>., o
-- @

O ca
EL

O

c-

O

(D

O
f_
O

c5

L

"- O

O
O,I
O

c5

O

O

c)

A

0

0

d

0
C'4
0

(5

0

0

0

0
0
0

0

0

0

(5
0
0 I

0

(5

X
t"¢3

-r-t



cq

0
0

q)

Z

L

0
,q__

or)
q)

C_

L

©

L

(_

S
0

o

II

-6

EL

C_
LO

U

£

o
E

CO

0

0
o.I

0

cJ
n

¥°
o

_n
o.

0 0

o o

0 0

I 1
0

c_
0

0
0,1

I

I , I

0 0

0 0

I I

0

0
O0

I

0

c_

0

0
0

0

0
L_

0

0

X

-0
C

_

@Jn].DAJno



_=,.,..,

G] 2"

S_ to

-- 1._

0
NI--.

0

0
0
cxl

0

0

0

_ d
0

0

0
0

0

0
0
r_

0

d
0

0 ,,--

0
0

0'_

.1-1

PRECEDII_¢G PAGE BILANK NOT FILMED



(-

0

-0
0

if5 --_

-u o

o
o F,
E _,

0

1._..

0

0

0
0

o_

0

0

lid
T---

0

- 0

0
p-.

0

0
0
_D

0

d
0
tO

0

0
0

0 .,--

0
0

o

"r"l



j_

©
_J o

CD

X

q)

> o
L_

Z5 c_

[0

Lu

L-

o
i+_

t--

o°-_
z)

0 o

L- 1.-

u u

O()

0_

0

! , |

\

7"

\

C)

J

[ 0

(D
CD

(D

CD
(D
1_0

4D

(D
0

CD

CD
C)

c_
I

b8



.I.J

0

r...5

r_

GO
-r-f

0



J

C_

C_

_J
0
0

0

_J
L_
q_

_J

0

C_

_J

_J


